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ON THE FEYNMAN-KAC's. FORMULA AND ITS APPLICATIONS TO FILTERING THEORY

Rajeeva L, Karandikar
Indian Statistical Institute

7, SJ.S. Sansanwal Narg,New Delhi
and

Center for Stochastic Processes
University of North Carolina

1. Introduction : Let (Xt ) be a Markov process, not asmmed to be time

homogeneous. It is well known that t z (t, Xt ) is a time homogeneous

Karkov process. Let A be its generator, The Feyrnan-4(acls formula for

Xt takes the following form if the equation

(1.) Av + ev : 0

adaits a solution v, then v has the representation, for s < t

(1.2) V(.. Xs) - E E(t.X ) exp(I (U.,Xu)du),a(X 5)]

We prove this under general conditions on (X ).
t

Then we came to the question of existence of solution to (1.1). We

show that under some regularity conditions on (Xt), (1.1) has a solution

for a rich class of boundary conditicns, This implies that the tdual'

equation to (1.1) admits a unique solution. The *dualt equation is an

equation for measures on the state space of (Xt ) and its unique solution

is the distribution of Xt under an absolutely continuous change of the

underlying probability measure by a multiplicative functional.

These results on the measure valued equations significantly

extend results given in [3] on the conditional distributions for the

nonlinear filtering problem (in the white noise approaeh).
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2. Let (S, S) be a measurable space. Let (X ) be an (S, ) vaLud

t
Markov process on a probability space (fl, A, w) with transition probability

function P. i.e.

1-: xt(W) C B) C

and

(2.1) ElB(Xt). .s] - P(a X. , t-., B) as. w

for all 0 <s <t < ,. B C S. Here. the function P(s,xtB) on

(0 <s < -, t 2 0, x c S, B e S) is assumed to satisfy the following

conditions.

(2.2) For s > O, t > 0. x e S; P(srxt,.) Is a countably additive

probability measure on (9, S).

(2.3) For s 0 O, x C S, 3 C ; P(sx,0,B) x 1,(x).

(2.4) For t 1 0, B e S; (sex) -P(s.xtB) is a SBL,0)) 4 j

measurable function (§(E) denotes the Borel a-field of a topological spae

E and 0 denotes the product of a-fields).

(2.5) For s 3 0, u >_0, t 0, x e S, B e is we have

* P(s+t,zu,B) P(sx,t.dz) - P(s,xtu,B)
S

Thrghout, * denotes the smallest @-field with respect to which the

am. ily (Xu  0 < u - t} is measurable. We also assume that

(2,6) the process (Xe) Is F- progressively measurable, i.e. for all
t Oat

t 0 -Cf.the mapping (t~w) -9 Xt (a) from Co,jlx n~ S s

Ir,, ( [o~t 0 J)- measuraible.o0
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Lot 0 [ ) x S, COw)) S. and Ju be the class Of

bounded real valued S measurable fumctions cn S.

Definition CA sequence {fk) g j is said tc converge weakly to f C j,

written as w-lia fP a f, if fk(x) is unifomly bounded and for each

x C s, fk(X) converges to f(x).

For f c t V 0 let Ttf : S 4 IR be defined by

* (2.7) (Ttf)(s,x) = Jf(s+t,z) P(sxt,dz), (s,x) C S.

Using the properties of P, it can be checked that Ttf C and that for

(2.8) Tu •Ttfl a Tt+u

Thus T " t v 01 is a semigroup of operators (from J Into Itself).

1
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Remark t It is well known and easy tc check that Xt a (t, X ) is a

Markov process with stationary transition probability function ' given

by

P(t, (sx), B) = P(s,xtB s+t)) B c
,C.

where Bu  denotes the u-6ection of B _1S. The semigroup (T t:t -> 01

defined above is the usual semigroup associated with the transition

function P (as in [2), section 2.1).

We will now recall the definition and scme properties of the weak

generator A of (Tt:t 0). Let J. be given by

J~c = ( f  w -lim Ttf = f)tO
it + 0

Definition : Let.=PA be the class of f e J for which the
A=

Ttf - f
(2.9) W-lim t g"-'.~ -0

exists and belongs to io and for f c RA' define Af = g, where g

is given by (2.9).

The following properties a e easy to prove. We will only state

them here. For a proof see chapter 1 in J2] .

(2.10) TtA A and for f * DA , A(Ttf) = TtAf

(2.11) For f C q t * (Ttf)(sx) is a right continuous function for

all (S.x) C

(2.12) For f c PA' we have, fcr all (s,x) C S, t > 0

"(T t f)(SX) = (SX) + (T u Af)(s,xldu

@.
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(2.13) Given f e j-o there exists a sequence (fk 1 Cp A such that

w-lim fk " f.

In (2.13) above, fk can be taken to be

fk(s,x) k e (T tf)(s.X)dx
o

The property (2.12) has the following Important consequence.

Proposition 1 : For f c QA' Mt  given by

t
(2.14) Mt(w) = f(t, Xt(w)) - (Af)(u, Xu(W))du

€'. 0

is a martingale with respect to the a-fields r t

Proof : The progressive measurability of- (X) implies the _X measurability

of Mt . Since f, Af e , they are bounded and hence Mt  is itself

bounded for each t. Now (2,1) implies

5'.
5-(2.15) Cft t Fftz 8 8 -

. (T t-6 f) (9, x a

for s < t. Similarly for s < u, we have

(2.16) E T [(Af)(uX)u jJ " (T - Af)(s, X,).

Using (2.11), (2.12). (2.15) and (2.16), It can te checked that

W [Mt - 3 ] 0.

~I]
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We now turn our attention to the leynman-Kacts formula. OiW sezt

result is a step in this direction.

Let g : 0,t.1 x S -r be a B( [,t x 8 ,easurable

function such that

(2.17) E. V D g(u, Xu)Idu] C W

and for a positive integrable function a : [0, t23 0 I ,

(2.18) g(u, x) <a() for al x e S. ue CO. to3.

Fix 0 < s < t and let

0t

(2.19) st(w) = exp(j g(u xu(W))du).
8

Then we have

Theorem 2 • Let f e A and g satisfy (2.17), (2.18). Then

(2.20) z = f(t. xt).st - g ))(u.X) + g(u.xu) -.B. du

t

is an .4 martingale for t > s (where B is given by (2.19)).

Proof : It is easy to see that Zt  Is 4 measurable. The condition

(2.18) implies that Bt  is bounded. Since f, Af are also bounded the

condition (2.17) gives the integrability of Zt . To prove the martingale

property, suffices to prove that for s < r <t, C c ,.,
oS..

-.: (2.20) E L(zt - Z ).lCJ 0

to

Let f1 (t,W) = f(t0 , X (t ))" f (Af)(u,Xu(M))du. Then by
o 1o r t;' .Proposition 1, it follows that: for 0 ' t < to

,.'

0 4_ - - - - - --. - - . . - --
..¢ , .. . .. .. .., . , .. : .. .. ... . .-. . . - ... . .. ..$ ....: . .. ... .., ... ..,. .,. -, .. . ,. ,- , ..- -'. .<
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(2.2.1) E f (t,.)IEX 3 =F(t,X.t)

and hence

(2.22) E -mk.Q(Zt-Zr)] Ev 1Ce(fj(t,.)B t-f I(r,.)B rf {(Af+gf)(uXu)du).
r

qNow for each w, f 1(t,ws), B (w) ame absolutely continuous functions and

hence

r

+ (Pf)(u,X u .WJ).B u 2) )du.

Thus

*(2.23) E If i(t,.)B t-f I(r,.)Br]= E 1* r f1(u,.)g(uXu)Bu du

+ E le ft (Af)(u,.)B u du
r

I' E 1C f (Af+gf)(uX )du

r

using 42.21) once again. N~ow (2.22) and (2.23) give the required

euqi ity

E 1 C (zt - Zr) o

RLPmrn It can be verif ied that

t

t~ =Mt Bt f MudD

where M is given by (2.10). Hace if M1 wr . right ccntinir'us,

it wcluld follow from the "intep'atinn by parts fr'imu1. #-:r vatinqale"

%- %. I>~ - .. *-*--V 10 .m e



(S4ee[5J thlt (Z, EX. is -t ma2-inrile. M-wever, ir. v'en..'al Mt

re~d n t bc right cc-ntinu tus ind henct. we h-ive ogive. -i direct -Y f.

-The f' 1Lin is thf rey xi--c's f f m r1a.tfir in 'iewr 4enc -u

Markcv prcccss.

and g S TP be bounded mesa:ed2n:n Sunos t2 v:C

d in a sriutio:n tou~s

9(2.24) [AV + cv 3Cu~x) if < *

(2.25) V(t-,x) W x

Then v admits a rerresentatio', fcr s < tC

t

(2.26) v7 ,X t V~~ )et( c-u, dujFf J ~ aue )du)

S

.J. . . . . .
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(Xt 1c the -,z- tlem (2.24), (2.25) admit -. s-luticn. Cf ccurse,

ift l.~ uti-r. ex~srts, it has t, sitiafy (2.26) :'n<d this ;vsacu

is I t -iit - ni!t.i ns -nt sh u11' -ut -n czX

u'.t-.-t S 4S -- tr~rv1 -ical1 space, S is its BC-rel cy field.

Let b* the sT-tce f ill rig;ht c-ntinu -us ma incs X fr-m CO..)

int- S . W will tr, t, by X th,- w&]lu, '-f X it t. Let

(3.1) f r ,I! w. X,(W) E

Ax!k thu t f-r all (s,x) c S, thort exists -rcbability measure P
S ,X

r.L~ such that f-.r C < t < t <.. <* *'ty*(S, AlWA2,.9AK S

k
(3.2) P (X c.. :>ilk) ! 1. (iP(t11 -itft 1 9 yt, v - 1  I A i y

Ramark The w~in thrust -f this assumtic'n is thoit P is rE:,1ized on
_______ £,X

The r~iin(2.1) %nd (3.2) imply that fcr (t.} ,{A.) as in (3.2),

we have

(3.3) 1 fl1(X ~ TY Pt, ( X EA. 1 l< i<k) a.s.w
C t. 11

t
an" t' hc(c by stmdari9 irvumcnts, w-- h'iv, fr-r B c

(3.4) 'W(X. PIj ) (B) A. s. IT
itt*:

(~t

t;inilarly, it car., be -rv-vrd that fcr s < t , 1B E t. M 9 X ,

(3.5' P (BAs) P 0~) P
S,x t t,~. S ,X

V%
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we are ncw in a position to prove a tcvre to the Feynman-Kac's

formula.

Theorem 4: Let 0 < t < - be fixed. Let c: 10,t 3x S -IR be a

b:.unded continuous function. Let f r DA Let v IR be definod

by

to

(3.6) v(s,x) = Ep f(t0 ,X ) exp(J c(U,X)du)j 1  
9 s < t

- (s,x) s s>too

Then v C DRA mnd Av =f 1  where

(3.7) f (s,x) =-c(s,x)v(s,x) S < to0

- (Af)(s,a) S > t

Proof Since v(sx) =f(s,x) fnr s > t,* we have

A(T tv)(s,x) = (T tf)(s,x)

for S :t0t x c S, t > 0. Hence for s > t 0 X C S.

(3.8) u-li Tt )sx -vsx = (Af)(s,X) f1(s,x)

For X * s <t let us define

t
(3.9 C f c~uX M0

(3.9 C~00M exp,(f c ,Xd)
s4

S

Then for s <t .. we have

v(s,X) r Bx jft 0 Xt 0 c (x)7

0&c

1' .'o O9'1 jj112 1 2110,
d'. 661 IIE & Mf
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Fcr s <t 0 9 8 +t <too we thus have

(3.10) (T t v)(s,x) x I v(S~t,z) P(B,x,t,ds)

= E [V.B+t. X S J
SOX

= E (t ,X )ctn (xDQ1s~(V

*by (3.5). Hence, for s < t, COxC S, s+ t < to we have

(T tv)(B,X)-v(S,X) C, ~f, c8+t( M C axM
(3.11) t _______O_

For all X EX 0 we have from (3.9)

C St(x)-C8(x)
(3.12) lia st---c(sX).C*(X)

Further

~ where X depends only on t. and the upper bound of I ci. The dminated

convergence thecrem gives that for 8 < '

(T V)(S'x) -V(S'X)

=-c(s'x) v(R.X)
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as P (X X) 1. Also, (3.13) iplies that the left hand expression
sX -6

'I in (3.11) is unifo'rmliy bounded (in s,x,t). Thus we have

(3.15) W-lim (T tv)(s,x) t- r(s.X)= 1 SX

Remains tc proe that f Co* This wi1 pro-ve that v e and that

Av xf1 If s >t f 1 (s.x) =(Af)(s,x) and henace for s >t 0

t > 0, (T, f )(s,x) =(Tt Af)(sx). Since Af e J this gives

(3.16) 1irm (T t f 1 )(s,x) = f1(s ,x) f-:r s > to, x e S

For a <t, we have

ITtf (8 X) - f1 (s,x) =-EP [c(B+t,x+ )V(S~t,x+ )-c(S,x)V(S,X) 7

t I E .rri --s+t./ -+t

P(,X EP9~~.6+)-VS
sS~x

'.New as t + 0, c(s+t, x ~ - c(S,X) =c(s'X) n.e. Ps', as c

is ccntinuous and X Uis right contL'!uoua. Hence by the drainated.

ccnvervence theorem,

l -~ .v,, -. +t) (c+t, x Cs'x))1 0.
t +0 S 'x

Tho relatimn (3.14) implies that

r
-C(BX)E r v-+t, X6t)vs,x)] -c(s'x) (t )SX-sl

p.3 x

.0

-U t 4 0. These nbqtarvat5Jna give

W V W ~ 11,1' hz**.rd P'~~*.~ . ..-* ~ .
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(3.17) 1lm (Tt f1 )(s,x) C fl(s'x) for s < t0  xt S
t +0

Now (3.16), (3,17) and the fact that Tt f is uniformly bounded yield

w-lim (Tf.,~~ w-l Tfl ) = fl
t + 0

Remark : Under the conditions assumed in this section and Theorem 4, the

equations (2.24), (2.25) for go(K)= f(t ,X) have a unique sclution v on

Ot x S which is given by (3.6). To see this, let v' be any

solution. Apply Theorem 3 to the process (X t s} on the probability

space ( , _ P ) to obtain, fcr s < t

v'(s,') EP Lf(t0., C_(X)I6s aes P-- s'X 0 X "'

Since under Ps'x any set in t: has measure zero or one, the

conditional expectation appearing above is the unconditional expectation

and thus equals v(s,x). Also X = x a.s. Ps,x* Hence we have

S-.., v'(s,X ) v(s.x) a.s. P "

Those observation imply

v'(s,x) = v(u,x)

4. We now consider an equation dual to (2.24), namely

d *Tt Kt = A Kt + _(t,.) t

where (Kt - V(S) - the class of finite signed measures on (S,S). Thc

.uqaticn (4.1) is purely fcrmal and is to be interpreted as

@4 AA&%I
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t t
(4.2) <f(t,. ),Kt> = <f(O,,),K C > + f <Af(,u,.),Ku>du + f <g(u,.)f(u,.),Ku>du

0 0

for f c D., Here, <O,u> denotes f e dU for u c U(S) and a function

e:s * IR, Thus <f(t,),I> = ff(t,x)du(x) f.'r f £ J. e will show

that this equation with bcundary condition

(4.3) Ko  = n o X1

admits a unique solution which is ,iven by

(4.4) K t(B) = E [1,Q¢)oxp(f g(u.X)duu . B , S.

The uniqueness will be proved in the class of (Kt ) satisfying

(4.5) (Kt) Q .(S), t , Kt(B) is a Borel measurable function

for all Bc and Kt <n o Xwith
it

dKt
J< K

dwoX-L
t

for all t, for a fixed constant M.

We continue to assume that the conditions imposed on (X) in

Section 3, are vz.lid. We further assume that S is a complete separable

metric space. We beain with a Lcrma.

Lemina 5 : Let 0 < t < be fixed. Let u c O(S) be such that

(4.6) <f(t..),la> = 0 V f £ D

Then u - 0.

%.

{%



Prcf : Let E be the class of f c J for which (4.6) holds. Easy to

see that if f e E, w-l-m = f, ther f £. Hence by (2.13),
k~m

For f c Cb(S), (i.e. f : IR is bounded continuous), we have

(Tt f)(s,x) = E f(s+t, X O ) f(s,x) as t + 0,
SiX

since X is right continuo-us. Thus C (S) Q r "
--U

Given f 0 Cb(S), taking f(s,x) = f(), we hzv e f r Cj )g .S

and hence

(4.7) <fo > 0

The validity of (4.7) for all f, c Cb(S) implies U 'x 0 because

S - the Borel o field - ic also the smallest a field with respect V,

which C)(S) is measurable.

We are now in a position tc pro v the assertions made at the begizming

of this section-. This result nay be considered as a dual. FeIynman-,ac's

formula.

Theorem 6 Suppose that V satisfies (2.17) and (2.18). Then the

equation (4.2) with boundary conditicn (4.3) admits a unique sclution in

the class cf (Kt) satisfying (4.5). The unique solution is given by

(4.4).

Prcof : First we will prove that (Kt I defino by (4.4) satisfies (4*2).

Lot {Kt) be defined by (a.4). Eisy to see that (4.3) and (4.5) nrc

sat isfied.

!V #, -,,, , , ." " •: .,'': ' T,;, ' " ', -"'.. ', - -.- -- - \ L. - \ L . -
"  

"','',-""-if
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Th]kinr s 0 in Theorem 2, it fllws from the martingale pwperty

.f Zt  that E Zt = E Z. Here, Zt  is given by (2.20) where in turn

Bt  is given by (2.19), with s = 0, Notinr that with these nctatirns,

< 0, Kt> x E e(xt )Bt

we conclude from the relatint F Zt -- E Z that

<f(t,. ,> - f <(A-f+f)(u,.), >eu (

Hence (K t } satisfies (4.2).

To' prive the uniqueness part, we will prove the follcwinF. Suppose

(K ) satisfies (4.2), (4.5) and K- 5 0. Then Kt  0 0, t > 0.
tt

For this fix t < and f c D Lot v he the measure defined o n

z Co,t-x S by

(4,S) ,,(B) = E f 1(u, Xu)eu , D
0

Then note th.it 2.17) implies f tg ev < Hence if : S' *IR is

defined by

--(4.9) qk (s.X) -g(s,x) 1 (..0

then we have

(4.10) fJI - + .,* 0 as k -
2-1. S t

. Fcr each k, (;k is '.cunder Iy k. By Lusids the, rem (su Il] , p. 187)

wo, can crLt Ck, E CJ(S'), bouneed bY k. such tMt

(4.11),* i-s .e. v as i 4 •

V.
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Hence

Let v be Riven !)y (3.6) fcor c c ki Then~ A v' -~ C~ vk,i

* ,n fil, t 0 ) x S by Thcrem 4.* Using (4.2) :for v1.,i and recalling that

K 0, we have

(4.13) <:F(t 0,) K to>=< ki(t,)K.o>

t

2 f <(Avk f+ v )(u,.), K1 > du
0

010

Thus
t

(4.l'U) Icf(t q).)Kt. > ! >~eivi~,) C!x-

14 EJ f 0 ~ ,i!(u,X )du.

04 ji7%.i-jk,ijd

As i + ' i converges pr-~ntwise to, v) nd is bounded by k

whe~re vk is zivea -'y (3.6) for c g.This and (4.11), (4.12), (4.14)

imply

Since (4.9) implie3 rck(u,x) c a(u),it fcllcwu that

t

IvkI .1 M1. exp(f 0a(u)5u) M 2

where ! M,, Hence



: I<f(t t .)# Kto>I < M.M2 fI!Vc , V

This and (4.10) imply <f(t ,.) , K >  Z 0. Since f e PA is arbitary,

. Lm 5 Pives Kt  = 0. This completts the pronf.

%< We will briefly consider the equation for normalized measures

K'(B)

(4.15) N t(B) Xt()B CS

where Kt is given by (4.4). It in easy to see, using (4.2) that {Mt)

satisfies.

t t
(4.16) <f(t,.),Nt> f(O,,).o+f " <(Af~gf)(u,. ) <f(uO),Nu'(u,.) u.

" 0 0 u u

We will now prove that (Nt) is the unique solution tc this equation.

Theorem 7 : The cquation (4.16) with tnundary cndition N0 0

admits a umique solution in the class cf (N t  satisfying (4.5). The

solution is given by (4.15).

Proof : We need to prove uniqueness of the soluti'-n. Let N' be any

other sclution, i.e. satisfying (4.5), (4.16) and N ' • . Then it

can be checked that Nt(S) = 1 for all t ' 0. Furthar, if K' is ,lefined by
tt

(4.17) K1() = N'(B) •exp(f <g(u,.), N' > du)
t t oU

then Xt' is a solution tc (4.2) -nd that it satisfies (4.3), (4.5).

Hence by Theorem 6, K' z Xt . This and the c.bsarvaticn that

K '(D)t t -

t K'(S)
t

givo us the required equality, namely N .  I._

A .7 , , %* A,

% .e
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5. We will nnw aive applications of the results in the previcus

sections to filtering the-'ry.

: . We refer the rPeader to C 4 ] for a 1,tailcK' discussinn and ba ck.g.Twud

on the white ncise approach to filtearinir theory.

We assume that the signal prr.cess (X t ) is a Mmrkcv process satisfying
the conditions imposed in the previcus sectirns

U-UU(X(w). 0

whe" Let K be a separable Hilbet sande. Let h H eT x Sy

.hoa measulhle function such that

. es~W f c t h u X u ) 1 1 d uf t n p

1 2(53 j()3 Eflf-~~~

, Lot H L 2( [0,T] , 6) and let E:fl - H be zaefined ,y

W)) u  h u(Xu(w)), 0 u T

'-'. Consider the model

wher-e e =(e t ) is _5-valued white noise independent of (Xt) .  Here y

. .is the observation progcess an(' 7,E,e are realised on a euasl cylinder

e nrc]bbility space (E, E,a) (see C4] section 6). we now state the

. Theorem 8 : For g. : S - IR Ixunded, measurableY

. ./.e. " '  p(5.2) E a(vz(X t) [y u .. u t- t) f /S g(x) dr t (y) (x)

:" (5.3) rt(Y)(B)-Eff, (t) u(),u  - r Nx~

,-

L 0'

N I -.r * ....- *-- - *

. ~ ~ ~ ~ "N LZ %.Yr **.



(5.4) t((

frc 0< t < T, y c H, c S.

r t (y), F t(Y) irc kncwn as unn, rmalized a~nd nrmlized conditional

distrihution rf Xt  given {y, u <t}, repecLiv=Iy.

The following is an Immedipte consequence of Theorems 6,7. Let

1 229y(t,x) = htx) yt)K 2 12[ t ( K! 10

. Theorem 9 - Let h satisfy (5.1).(i) Fr all y c H, rt(y) is the

unicue sclution to the equation

t
N. (5.5) <f(t,.),rt (y)> = Cf(O,.). r (y)> +f <(Af+ f)(u,.),ru(y)>du,

0

with the ccndition r (Y) = o X in the class of (K I satisfying (4.5).

(ii) For all y e H, Ft(y) is the unique solution to the equation

-k. t

(5.6) <f(t,.),Ft(y)> = <f(O,.),F(y), + f ° ),Fu(Y) ) du

t0
- f <f(u,.),r (y) >4y(U,.),Fu(Y)>du, f c D

41: 0 uyu=

with the initial c-nditicn F (v) = X -1 X in the class of (IY}
r" t

satisfying (4.5).

Prccf: Since

k7(t,x)i c IIht(x)l I + 1lytll
and

,e .~~( ,X) <. I II.

it fAolws that for all v c H, p, satisfies (2.17) and (2.18), Thus (i)

follows frm Thcrcym 6 and (iI) from'Tho.ram 7.

. N
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Remark : Theorem 9 was proved in L 3 under the much stronger condition

(5.7) Iht(x)1 < a with f a 2 t <

The equations (5.5) and (5.6) are analogues of the Zakai and tjisaki-

lKalianpur-Kunita equatinns. In[3], r t(y) and Ft(y) were also

characterized as unique solutions tc another type of ecuations (equations

(3.4) and (3.11) !n [3 ]) under the conditin (5.7). With a little

bit of wcrk, it can be shown that (5.7) can be replaced by (5.1) in these

results as well.
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